WIDER FACE数据集转化为yolo标注数据

WIDER FACE是一个人脸数据集合,其中包含了人脸的标注,可以用它来转化为yolo的标注格式,做训练,极大节约成本

转化代码:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
import os
def convert_wider_to_yolo(annotation_file, image_folder, output_folder):
if not os.path.exists(output_folder):
os.makedirs(output_folder)
with open(annotation_file, 'r') as f:
lines = f.readlines()
i = 0
while i < len(lines):
image_path = lines[i].strip()
num_faces = int(lines[i + 1].strip())
i += 2
if num_faces == 0:
i += 1
continue
image_full_path = os.path.join(image_folder, image_path)
output_name = os.path.splitext(os.path.basename(image_path))[0] + '.txt'
rel_dir = os.path.dirname(image_path)
output_dir = os.path.join(output_folder, rel_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_path = os.path.join(output_dir, output_name)
with open(output_path, 'w') as f_out:
for _ in range(num_faces):
parts = lines[i].strip().split()
x1, y1, w, h = map(int, parts[:4])
i += 1
# Assume you have a function `get_image_size()` that returns the (width, height) of the image.
image_w, image_h = get_image_size(image_full_path)
# Convert to YOLO format
center_x = (x1 + w / 2) / image_w
center_y = (y1 + h / 2) / image_h
width = w / image_w
height = h / image_h
f_out.write(f"0 {center_x} {center_y} {width} {height}\n")
def get_image_size(image_path):
from PIL import Image
with Image.open(image_path) as img:
return img.size
# 替换为你实际的文件路径
annotation_file = '/path/WIDER_train_yolo/wider_face_train_bbx_gt.txt'
image_folder = '/path/WIDER_train_yolo/WIDER_train/images/'
output_folder = '/path/WIDER_train_yolo/WIDER_train/labels'
convert_wider_to_yolo(annotation_file, image_folder, output_folder)
import os def convert_wider_to_yolo(annotation_file, image_folder, output_folder): if not os.path.exists(output_folder): os.makedirs(output_folder) with open(annotation_file, 'r') as f: lines = f.readlines() i = 0 while i < len(lines): image_path = lines[i].strip() num_faces = int(lines[i + 1].strip()) i += 2 if num_faces == 0: i += 1 continue image_full_path = os.path.join(image_folder, image_path) output_name = os.path.splitext(os.path.basename(image_path))[0] + '.txt' rel_dir = os.path.dirname(image_path) output_dir = os.path.join(output_folder, rel_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) output_path = os.path.join(output_dir, output_name) with open(output_path, 'w') as f_out: for _ in range(num_faces): parts = lines[i].strip().split() x1, y1, w, h = map(int, parts[:4]) i += 1 # Assume you have a function `get_image_size()` that returns the (width, height) of the image. image_w, image_h = get_image_size(image_full_path) # Convert to YOLO format center_x = (x1 + w / 2) / image_w center_y = (y1 + h / 2) / image_h width = w / image_w height = h / image_h f_out.write(f"0 {center_x} {center_y} {width} {height}\n") def get_image_size(image_path): from PIL import Image with Image.open(image_path) as img: return img.size # 替换为你实际的文件路径 annotation_file = '/path/WIDER_train_yolo/wider_face_train_bbx_gt.txt' image_folder = '/path/WIDER_train_yolo/WIDER_train/images/' output_folder = '/path/WIDER_train_yolo/WIDER_train/labels' convert_wider_to_yolo(annotation_file, image_folder, output_folder)
import os

def convert_wider_to_yolo(annotation_file, image_folder, output_folder):
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)

    with open(annotation_file, 'r') as f:
        lines = f.readlines()

    i = 0
    while i < len(lines):
        image_path = lines[i].strip()
        num_faces = int(lines[i + 1].strip())
        i += 2

        if num_faces == 0:
            i += 1
            continue

        image_full_path = os.path.join(image_folder, image_path)
        output_name = os.path.splitext(os.path.basename(image_path))[0] + '.txt'

        rel_dir = os.path.dirname(image_path)
        output_dir = os.path.join(output_folder, rel_dir)
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        output_path = os.path.join(output_dir, output_name)

        with open(output_path, 'w') as f_out:
            for _ in range(num_faces):
                parts = lines[i].strip().split()
                x1, y1, w, h = map(int, parts[:4])
                i += 1

                # Assume you have a function `get_image_size()` that returns the (width, height) of the image.
                image_w, image_h = get_image_size(image_full_path)
                
                # Convert to YOLO format
                center_x = (x1 + w / 2) / image_w
                center_y = (y1 + h / 2) / image_h
                width = w / image_w
                height = h / image_h

                f_out.write(f"0 {center_x} {center_y} {width} {height}\n")


def get_image_size(image_path):
    from PIL import Image
    with Image.open(image_path) as img:
        return img.size


# 替换为你实际的文件路径
annotation_file = '/path/WIDER_train_yolo/wider_face_train_bbx_gt.txt'
image_folder = '/path/WIDER_train_yolo/WIDER_train/images/'
output_folder = '/path/WIDER_train_yolo/WIDER_train/labels'

convert_wider_to_yolo(annotation_file, image_folder, output_folder)

运行后目录结构

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
── images
│ ├── 0--Parade
│ ├── 10--People_Marching
。。。。。。。。
│ ├── 8--Election_Campain
│ └── 9--Press_Conference
└── labels
├── 0--Parade
├── 10--People_Marching
。。。。。。。。
├── 8--Election_Campain
└── 9--Press_Conferencez
── images │ ├── 0--Parade │ ├── 10--People_Marching 。。。。。。。。 │ ├── 8--Election_Campain │ └── 9--Press_Conference └── labels ├── 0--Parade ├── 10--People_Marching 。。。。。。。。 ├── 8--Election_Campain └── 9--Press_Conferencez
── images
│   ├── 0--Parade
│   ├── 10--People_Marching
。。。。。。。。
│   ├── 8--Election_Campain
│   └── 9--Press_Conference
└── labels
    ├── 0--Parade
    ├── 10--People_Marching
。。。。。。。。
    ├── 8--Election_Campain
    └── 9--Press_Conferencez

转化后的数据格式,可以用labelImg来打开,做测试

Leave a Reply

Your email address will not be published. Required fields are marked *