[转]由生产者/消费者问题看JAVA多线程

本文转载自:http://blog.csdn.net/coutcin/article/details/1213834

生产者消费者问题是研究多线程程序时绕不开的问题,它的描述是有一块生产者和消费者共享的有界缓冲区,生产者往缓冲区放入产品,消费者从缓冲区取走产品,这个过程可以无休止的执行,不能因缓冲区满生产者放不进产品而终止,也不能因缓冲区空消费者无产品可取而终止。

解决生产者消费者问题的方法有两种,一种是采用某种机制保持生产者和消费者之间的同步,一种是在生产者和消费者之间建立一个管道。前一种有较高的效率并且可控制性较好,比较常用,后一种由于管道缓冲区不易控制及被传输数据对象不易封装等原因,比较少用。

同步问题的核心在于,CPU是按时间片轮询的方式执行程序,我们无法知道某一个线程是否被执行、是否被抢占、是否结束等,因此生产者完全可能当缓冲区已满的时候还在放入产品,消费者也完全可能当缓冲区为空时还在取出产品。

现在同步问题的解决方法一般是采用信号或者加锁机制,即生产者线程当缓冲区已满时放弃自己的执行权,进入等待状态,并通知消费者线程执行。消费者线程当缓冲区已空时放弃自己的执行权,进入等待状态,并通知生产者线程执行。这样一来就保持了线程的同步,并避免了线程间互相等待而进入死锁状态。

JAVA语言提供了独立于平台的线程机制,保持了”write once, run anywhere”的特色。同时也提供了对同步机制的良好支持。

在JAVA中,一共有四种方法支持同步,其中三个是同步方法,一个是管道方法。

1. 方法wait()/notify()

2. 方法await()/signal()

3. 阻塞队列方法BlockingQueue

4. 管道方法PipedInputStream/PipedOutputStream

下面我们看各个方法的实现:

1. 方法wait()/notify()

wait()和notify()是根类Object的两个方法,也就意味着所有的JAVA类都会具有这个两个方法,为什么会被这样设计呢?我们可以认为所有的对象默认都具有一个锁,虽然我们看不到,也没有办法直接操作,但它是存在的。

wait()方法表示:当缓冲区已满或空时,生产者或消费者线程停止自己的执行,放弃锁,使自己处于等待状态,让另一个线程开始执行;

notify()方法表示:当生产者或消费者对缓冲区放入或取出一个产品时,向另一个线程发出可执行通知,同时放弃锁,使自己处于等待状态。

import java.util.LinkedList;

public class Sycn1{
    private LinkedList<Object> myList =new LinkedList<Object>();
    private int MAX = 10;
    
    public Sycn1(){
    }
    
    public void start(){
            new Producer().start();
            new Consumer().start();
    }
    
    public static void main(String[] args) throws Exception{
        Sycn1 s1 = new Sycn1();
        s1.start();
    }
    
    class Producer extends Thread{        
        public void run(){
            while(true){
                synchronized(myList){
                    try{
                        while(myList.size() == MAX){
                            System.out.println("warning: it's full!");
                            myList.wait();
                        }
                        Object o = new Object();
                        if(myList.add(o)){
                            System.out.println("Producer: " + o);
                            myList.notify();
                        }
                    }catch(InterruptedException ie){
                        System.out.println("producer is interrupted!");
                    }
                }
            }
        }
    }
    
    class Consumer extends Thread{
        public void run(){
            while(true){
                synchronized(myList){
                    try{
                        while(myList.size() == 0){
                            System.out.println("warning: it's empty!");
                            myList.wait();
                        }
                        Object o = myList.removeLast();
                        System.out.println("Consumer: " + o);
                        myList.notify();
                    }catch(InterruptedException ie){
                        System.out.println("consumer is interrupted!");
                    }
                }
            }
        }
    }
    
}

2. 方法await()/signal()

在JDK5.0以后,JAVA提供了新的更加健壮的线程处理机制,包括了同步、锁定、线程池等等,它们可以实现更小粒度上的控制。await()和signal()就是其中用来做同步的两种方法,它们的功能基本上和wait()/notify()相同,完全可以取代它们,但是它们和新引入的锁定机制Lock直接挂钩,具有更大的灵活性。

import java.util.LinkedList;

import java.util.concurrent.locks.*;

public class Sycn2{
    private LinkedList<Object> myList = new LinkedList<Object>();
    private int MAX = 10;
    private final Lock lock = new ReentrantLock();
    private final Condition full = lock.newCondition();
    private final Condition empty = lock.newCondition();
    
    public Sycn2(){
    }
    
    public void start(){
            new Producer().start();
            new Consumer().start();
    }
    
    public static void main(String[] args) throws Exception{
        Sycn2 s2 = new Sycn2();
        s2.start();
    }
    
    class Producer extends Thread{        
        public void run(){
            while(true){
                lock.lock();
                try{
                    while(myList.size() == MAX){
                        System.out.println("warning: it's full!");
                        full.await();
                    }
                    Object o = new Object();
                    if(myList.add(o)){
                        System.out.println("Producer: " + o);
                        empty.signal();
                    }
                }catch(InterruptedException ie){
                    System.out.println("producer is interrupted!");
                }finally{
                    lock.unlock();
                }
            }
        }
    }
    
    class Consumer extends Thread{
        public void run(){
            while(true){
                lock.lock();
                try{
                    while(myList.size() == 0){
                        System.out.println("warning: it's empty!");
                        empty.await();
                    }
                    Object o = myList.removeLast();
                    System.out.println("Consumer: " + o);
                    full.signal();
                }catch(InterruptedException ie){
                    System.out.println("consumer is interrupted!");
                }finally{
                    lock.unlock();
                }
            }
        }
    }
    
}

3. 阻塞队列方法BlockingQueue

BlockingQueue也是JDK5.0的一部分,它是一个已经在内部实现了同步的队列,实现方式采用的是我们的第2种await()/signal()方法。它可以在生成对象时指定容量大小。

它用于阻塞操作的是put()和take()方法。

put()方法类似于我们上面的生产者线程,容量最大时,自动阻塞。

take()方法类似于我们上面的消费者线程,容量为0时,自动阻塞。

import java.util.concurrent.*;

public class Sycn3{
    private LinkedBlockingQueue<Object> queue = new LinkedBlockingQueue<Object>(10);
    private int MAX = 10;
    
    public Sycn3(){
    }
    
    public void start(){
            new Producer().start();
            new Consumer().start();
    }
    
    public static void main(String[] args) throws Exception{
        Sycn3 s3 = new Sycn3();
        s3.start();
    }
    
    class Producer extends Thread{        
        public void run(){
            while(true){
                //synchronized(this){
                try{
                    if(queue.size() == MAX)
                        System.out.println("warning: it's full!");
                    Object o = new Object();
                    queue.put(o);
                    System.out.println("Producer: " + o);
                    }catch(InterruptedException e){
                        System.out.println("producer is interrupted!");
                    }
                //}
            }
        }
    }
    
    class Consumer extends Thread{
        public void run(){
            while(true){
                //synchronized(this){
                try{
                    if(queue.size() == 0)
                        System.out.println("warning: it's empty!");
                    Object o = queue.take();
                    System.out.println("Consumer: " + o);
                    }catch(InterruptedException e){
                        System.out.println("producer is interrupted!");
                    }
                //}
            }
        }
    }
    
}

4. 管道方法PipedInputStream/PipedOutputStream

这个类位于java.io包中,是解决同步问题的最简单的办法,一个线程将数据写入管道,另一个线程从管道读取数据,这样便构成了一种生产者/消费者的缓冲区编程模式。

下面是一个例子代码,在这个代码我没有使用Object对象,而是简单的读写字节值,这是因为PipedInputStream/PipedOutputStream不允许传输对象,这是JAVA本身的一个bug,具体的大家可以看sun的解释:http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4131126

import java.io.*;

public class Sycn4{
    private PipedOutputStream pos;
    private PipedInputStream pis;
    //private ObjectOutputStream oos;
    //private ObjectInputStream ois;
    
    public Sycn4(){
        try{
            pos = new PipedOutputStream();
            pis = new PipedInputStream(pos);
            //oos = new ObjectOutputStream(pos);
            //ois = new ObjectInputStream(pis);
        }catch(IOException e){
            System.out.println(e);
        }
    }
    
    public void start(){
        new Producer().start();
        new Consumer().start();
    }
    
    public static void main(String[] args) throws Exception{
        Sycn4 s4 = new Sycn4();
        s4.start();
    }
    
    class Producer extends Thread{
        public void run() {
            try{
                while(true){
                    int b = (int) (Math.random() * 255);
                    System.out.println("Producer: a byte, the value is " + b);
                    pos.write(b);
                    pos.flush();
                    //Object o = new MyObject();
                    //oos.writeObject(o);
                    //oos.flush();
                    //System.out.println("Producer: " + o);
                }
            }catch(Exception e){
                //System.out.println(e);
                e.printStackTrace();
            }finally{
                try{
                    pos.close();
                    pis.close();
                    //oos.close();
                    //ois.close();
                }catch(IOException e){
                    System.out.println(e);
                }
            }
        }
    }
    
    class Consumer extends Thread{
        public void run(){
            try{
                while(true){
                    int b = pis.read();
                    System.out.println("Consumer: a byte, the value is " + String.valueOf(b));
                    //Object o = ois.readObject();
                    //if(o != null)
                        //System.out.println("Consumer: " + o);
                }
            }catch(Exception e){
                //System.out.println(e);
                e.printStackTrace();
            }finally{
                try{
                    pos.close();
                    pis.close();
                    //oos.close();
                    //ois.close();
                }catch(IOException e){
                    System.out.println(e);
                }
            }
        }
    }
    
    //class MyObject implements Serializable {
    //}
}

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *