Python多进程并发(multiprocessing)

由于Python设计的限制(我说的是咱们常用的CPython)。最多只能用满1个CPU核心。

Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。

1、新建单一进程

如果我们新建少量进程,可以如下:

import multiprocessing
import time

def func(msg):
    for i in xrange(3):
	    print msg
	    time.sleep(1)

if __name__ == "__main__":
    p = multiprocessing.Process(target=func, args=("hello", ))
    p.start()
    p.join()
    print "Sub-process done."

2、使用进程池

是的,你没有看错,不是线程池。它可以让你跑满多核CPU,而且使用方法非常简单。

注意要用apply_async,如果落下async,就变成阻塞版本了。

processes=4是最多并发进程数量。

import multiprocessing
import time

def func(msg):
    for i in xrange(3):
	    print msg
	    time.sleep(1)

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes=4)
    for i in xrange(10):
        msg = "hello %d" %(i)
        pool.apply_async(func, (msg, ))
    pool.close()
    pool.join()
    print "Sub-process(es) done."

3、使用Pool,并需要关注结果

更多的时候,我们不仅需要多进程执行,还需要关注每个进程的执行结果,如下:

import multiprocessing
import time

def func(msg):
    for i in xrange(3):
	    print msg
	    time.sleep(1)
    return "done " + msg

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes=4)
    result = []
    for i in xrange(10):
        msg = "hello %d" %(i)
        result.append(pool.apply_async(func, (msg, )))
    pool.close()
    pool.join()
    for res in result:
        print res.get()
    print "Sub-process(es) done."

2014.12.25更新

根据网友评论中的反馈,在Windows下运行有可能崩溃(开启了一大堆新窗口、进程),可以通过如下调用来解决:

multiprocessing.freeze_support()

 

13 thoughts on “Python多进程并发(multiprocessing)

  1. 請問
    from multiprocessing import Process, freeze_support
    ...
    ...
    
    if __name__ == '__main__':
        freeze_support()
    這樣加嗎?
    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *